Supporting Information

Thermodynamic and Transport Properties of $H_2O+NaCl$ from Polarizable Force Fields

Hao Jiang[†], Zoltan Mester[†], Othonas A. Moultos[‡], Ioannis G. Economou[‡], and Athanassios Z. Panagiotopoulos[†]

[†]Department of Chemical and Biological Engineering, Princeton University., Princeton, New Jersey 08544, United States [‡]Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

	Buckingham potential	charge $q(e)$	Gaussian width σ (Å)	polarizability α (A ³)	geometry
H ₂ O	A=322000 kJ/mol	$q_O = -1.168$	$\sigma_O=0.71$	$\alpha_O = 0.72$	$d_{OH} = 0.975 \text{\AA}$
	$B{=}3.56~{\rm \AA}^{-1}$	$q_H = 0.584$	$\sigma_H=0.4$	$\alpha_H=0.36$	$\angle HOH = 104.52^{\circ}$
	$C{=}3320 \text{ kJ}\text{\AA}^6/\text{mol}$				$d_{OM} = 0.2661 \text{\AA}$
Na ⁺	$A=8.5 \times 10^{12} \text{ kJ/mol}$	$q_{Na} = 11$	$\sigma_{Na}=0.65$	$\alpha_{Na}=0.157$	
	$B{=}15 \ {\rm \AA}^{-1}$	$q_D = -10$	$\sigma_D=0.65$		
	$C{=}550 \text{ kJ}\text{\AA}^6/\text{mol}$				
Cl ⁻	$A=9.4 \times 10^5 \text{ kJ/mol}$	$q_{Cl} = -11$	$\sigma_{Cl}=0.96$	$\alpha_{Cl}=3.5$	
	$B{=}3.1 \text{ Å}^{-1}$	$q_D = 10$	$\sigma_D = 0.96$		
	$C{=}8000 \text{ kJ}\text{\AA}^6/\text{mol}$				

Table 1: Force field parameters of BK3 water and ions models.

Table 2: Force field parameters of SWM4-NDP water and ions models.

	Lennard-Jones potential	charge $q(e)$	polarizability α (A ³)	geometry
H ₂ O	ϵ =0.883 kJ/mol	$q_O = 1.71636$	$\alpha_D = 0.97825$	$d_{OH} = 0.9572 \text{\AA}$
	$\sigma = 3.184 \text{ Å}$	$q_M = -1.11466$		$\angle HOH=104.52^{\circ}$
		$q_H = 0.55733$		$d_{OM} = 0.24034 \text{\AA}$
		$q_D = -1.71636$		
Na ⁺	ϵ =0.1316 kJ/mol	$q_{Na} = 1.688$	$\alpha_{Na}=0.157$	
	$\sigma = 2.923$ Å	$q_D = -0.688$		
Cl ⁻	ϵ =0.3008 kJ/mol	$q_{Cl} = 2.46$	$\alpha_{Cl}=3.969$	
	$\sigma{=}4.963$ Å	$q_D = -3.46$		

	Lennard-Jones potential	charge $q(e)$	geometry
H_2O	ϵ =0.65 kJ/mol	$q_O = -0.8476$	$d_{OH}=1.0\text{\AA}$
	$\sigma{=}3.16$ Å	$q_M = 0.4238$	$\angle HOH = 109.47^{\circ}$
Na ⁺	ϵ =0.5439 kJ/mol	$q_{Na} = 1.0$	
	$\sigma{=}2.35$ Å		
Cl-	ϵ =0.4184 kJ/mol	$q_{Cl} = -1.0$	
	$\sigma{=}4.4$ Å		

Table 3: Force field parameters of SPC/E+SD models

Table 4: Simulation results for relative permittivities ϵ of BK3 and SPC/E water models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given in parentheses in units of the last significant figure shown: 80(2) means 80±2.

T	ϵ		
(K)	BK3	SPC/E	
298.15	80(2)	73(2)	
373.15	56(2)	53(1)	
473.15	34(1)	33(1)	

Table 5: Simulation results for the liquid densities ρ (kg/m³) of BK3 models at T = 298.15 K, 373.15 K, 473.15 K and P = 100 bar. Statistical uncertainties are given as in Table 4.

m	$ ho~({ m kg/m^3})$				
(mol/kg)	298.15 K	$373.15 { m K}$	$473.15 { m K}$		
0.00	1002.4(3)	961.9(2)	863.5(2)		
0.44	1019.6(3)	978.4(2)	882.8(4)		
1.33	1053.5(3)	1010.6(5)	920.3(4)		
2.22	1083.1(3)	1037.2(4)	948.3(3)		
3.00	1107.2(5)	1060.0(4)	978.5(4)		
4.22	1142.5(6)	1093.6(3)	1008.4(4)		

Table 6: Simulation results for the liquid densities ρ (kg/m³) of SPC/E+SD models at T = 298.15 K, 373.15 K, 473.15 K and P = 100 bar. Statistical uncertainties are given as in Table 4.

m	$ ho ~({ m kg/m^3})$		
(mol/kg)	298.15 K	$373.15 { m K}$	$473.15 { m K}$
0.00	1001.2(7)	949.1(4)	841(1)
1.00	1040.9(3)	988.4(4)	886.4(6)
2.00	1076.8(3)	1022.6(5)	923.6(6)
3.00	1107.8(5)	1053.1(5)	955.3(6)
4.00	1135.3(3)	1078.2(4)	982.4(5)

Table 7: Simulation results for the electrolyte chemical potential μ (kJ/mol) and mean ionic activity coefficients γ of BK3 models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

m	298.15 K,	1 bar	373.15 K,	1 bar	473.15 K, 1	15.5 bar
(mol/kg)	μ (kJ/mol)	$\ln\gamma$	μ (kJ/mol)	$\ln\!\gamma$	μ (kJ/mol)	$\ln\gamma$
0.11	-409.2(3)	-0.26(1)	-405.6(3)	-0.32(2)	-399.3(4)	-0.46(2)
0.44	-402.8(3)	-0.35(8)	-397.5(3)	-0.39(7)	-389.6(4)	-0.61(7)
1.33	-397.4(3)	-0.41(8)	-391.3(4)	-0.52(7)	-383.2(4)	-0.93(6)
2.22	-394.8(3)	-0.37(8)	-388.0(3)	-0.47(7)	-379.8(4)	-0.98(7)
3.00	-393.1(3)	-0.32(8)	-386.3(3)	-0.51(7)	-378.4(4)	-1.10(7)
4.22	-391.1(3)	-0.26(8)	-384.3(3)	-0.51(7)	-376.5(4)	-1.20(6)

Table 8: Simulation results for the electrolyte chemical potential μ (kJ/mol) and mean ionic activity coefficients γ of SPC/E+SD models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

m	298.15 K,	1 bar †	373.15 K	K, 1bar	473.15 ł	K, 15.5 bar
(mol/kg)	μ (kJ/mol)	$\ln\gamma$	$\mu \ (kJ/mol)$	$\ln\gamma$	(mol/kg)	μ (kJ/mol)
0.011	-403.1(2)	-0.138(6)	-400.7(2)	-0.141(4)	-394.0(2)	-0.200(9)
0.06	-395.6(2)	-0.24(5)	_	_	_	_
0.11	_	—	-387.6(2)	-0.33(4)	-378.5(2)	-0.54(3)
0.56	-384.5(2)	-0.31(4)	-378.1(2)	-0.41(4)	-367.6(2)	-0.76(3)
1.00	-381.8(2)	-0.34(4)	-374.0(2)	-0.34(4)	-363.6(2)	-0.85(3)
2.00	-377.7(2)	-0.21(5)	—	_	_	—
3.00	-375.1(2)	-0.10(5)	-367.5(2)	-0.39(4)	-357.0(2)	-1.10(3)
4.00	-373.3(2)	-0.03(5)	—	_	_	_
5.00	-371.7(2)	0.08(5)	-363.9(2)	-0.34(4)	-354.2(2)	-1.25(3)
6.00	-370.5(2)	0.14(5)	-362.9(2)	-0.34(4)	-353.2(2)	-1.32(3)

[†] Data are from Z. Mester and A. Z. Panagiotopoulos, J. Chem. Phys. 142, 044507-10 (2015).

Table 9: Henry's law standard chemical potential μ^{\dagger} (kJ/mol) of BK3 and SPC/E+SD models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

T(K)	P(bar)	$\mu_{\rm BK3}^{\dagger} \; ({\rm kJ/mol})$	$\mu^{\dagger}_{\rm SPC/E+SD}$ (kJ/mol)
298.15 K	1.0 bar	-397.0(3)	-380.1(2)
$373.15 { m K}$	1.0 bar	-389.9(3)	-371.9(2)
473.15 K	15.5 bar	-378.3(4)	-357.0(2)

Table 10: Simulation results for the crystal chemical potential μ (kJ/mol), crystal density ρ (kg/m³) and salt solubilities of BK3 models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

T (K)	$\mu ~(\rm kJ/mol)$	$ ho~({\rm kg/m^3})$	solubility (mol/kg)
298.15	-399.0(2)	2115.8(4)	0.99(5)
373.15	-390.6(2)	2097.8(3)	1.48(6)
473.15	-379.4(3)	2073.0(4)	2.5(1)

Table 11: Simulation results for the crystal chemical potential μ (kJ/mol), crystal density ρ (kg/m³) and salt solubilities of SD models at T = 298.15 K, 373.15 K and 473.15 K. Data are from reference [66]. Statistical uncertainties are given as in Table 4.

T (K)	$\mu ~(\rm kJ/mol)$	$ ho~({\rm kg/m^3})$	solubility (mol/kg)
298.15	-384.019(2)	1932.4(1)	0.63(1)
373.15	-376.241(2)	1916.4(1)	0.73(1)
473.15	-365.331(2)	1894.7(1)	0.78(2)

Table 12: Simulation results for vapor pressures P^{sat} (bar) of BK3 models at T = 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

m	P^{sat} (bar)		
(mol/kg)	373.15 K	473.15 K	
0.00	$1.12(4)^{\dagger}$	$18.6(4)^{\dagger}$	
0.43	1.13(4)	18.4(5)	
1.30	1.05(4)	18.1(5)	
2.17	0.99(5)	17.2(6)	
3.03	0.98(4)	16.6(6)	
4.33	0.93(5)	16.3(5)	
4.99	0.94(7)	16.1(5)	

[†]Data are obtained from extrapolating vapor pressure of solution to zero salt concentration.

Table 13: Fitting parameters in Eq.12 for BK3 models at T = 373.15 K and 473.15 K.

Parameter	$373.15~\mathrm{K}$	473.15 K
A	0.604	0.894
В	1.361	1.486
b	-0.216	-0.458
C	0.070	0.099
D	-0.007	-0.008

Table 14: Simulation results for vapor pressures P^{sat} (bar) of AH/SWM4-NDP models at T = 373.15 K. Statistical uncertainties are given as in Table 4.

$m \pmod{\text{kg}}$	P^{sat} (bar)	
0.00	3.1(1)	
1.00	3.5(1)	
2.00	3.7(1)	
3.00	4.0(1)	

Table 15: Simulation results for vapor-liquid interfacial tensions σ (mN/m) of BK3 models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

m	$\sigma ~({\rm mN/m})$		
(mol/kg)	$298.15~\mathrm{K}$	$373.15 { m K}$	473.15 K
0.44	67.9(8)	54.5(8)	33.3(8)
1.33	70(1)	56.8(7)	36.6(6)
2.22	70.5(8)	58.1(6)	39.2(6)
3.00	72(1)	60.3(6)	40.9(6)
4.33	74.0(9)	60.9(7)	42.8(8)
5.00	76.1(7)	62.5(7)	44.2(6)

Table 16: Simulation results for shear viscosities η (cP) of BK3 models at T = 298.15 K, 373.15 K and 473.15 K. Statistical uncertainties are given as in Table 4.

m	η (cP)		
(mol/kg)	$298.15 { m K}$	373.15 K	473.15 K
0.00	1.00(4)	0.299(8)	0.133(3)
0.44	1.05(1)	0.31(1)	0.145(4)
1.00	1.12(5)	0.33(1)	0.154(2)
2.00	1.29(4)	0.39(1)	0.179(6)
3.00	1.41(3)	0.44(1)	0.199(5)
4.00	1.57(9)	0.51(2)	0.219(4)
6.00	2.4(1)	0.61(2)	0.228(5)

Figure 1: Radial distribution functions between Na⁺ and Cl⁻ of binary H₂O+NaCl mixture with BK3 models at m = 6.0, and T = 298.15 K, 373.15 K and 473.15 K.

Figure 2: Vapor pressures P^{sat} (bar) for AH/SWM4-NDP models of the system H₂O + NaCl at T = 373.15 K versus NaCl molality, m, in mol NaCl / kg of H₂O. Symbols are simulation results, and solid line is experimental data (S. L. Phillips, A. Igbene, J. A. Fair, H. Ozbek, and H. Tavana., A Technical Databook for Geothermal Energy Utilization).